

Product Features

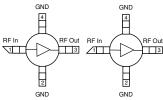
- DC 5.5 GHz
- +15.5 dBm P1dB at 1 GHz
- +32 dBm OIP3 at 1 GHz
- 15 dB Gain at 1 GHz
- 4.0 dB Noise Figure at 2 GHz
- Available in lead-free / green SOT-363, SOT-86 and SOT-89 Package Styles
- Internally matched to 50Ω

Applications

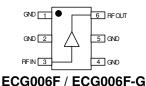
- Mobile Infrastructure
- CATV / DBS
- W-LAN / ISM
- RFID
- Defense / Homeland Security
- Fixed Wireless

Product Description

The ECG006 is a general-purpose buffer amplifier that offers high dynamic range in a low-cost surface-mount package. At 1000 MHz, the ECG006 typically provides 15 dB of gain, +32 dBm Output IP3, and +15.5 dBm P1dB.


The ECG006 consists of Darlington pair amplifiers using the high reliability InGaP/GaAs HBT process technology and only requires DC-blocking capacitors, a bias resistor, and an inductive RF choke for operation. The device is ideal for wireless applications and is available in low-cost, surface-mountable plastic lead-free/green/RoHS-compliant SOT-363, SOT-86 and SOT-89 packages. All devices are 100% RF and DC tested.

The broadband MMIC amplifier can be directly applied to various current and next generation wireless technologies such as GPRS, GSM, CDMA, and W-CDMA. In addition, the ECG006 will work for other various applications within the DC to 5.5 GHz frequency range such as CATV and fixed wireless.


Functional Diagram

ECG006B / ECG006B-G

ECG006C / ECG006C-G

Specifications (1)

Parameter	Units	Min	Тур	Max
Operational Bandwidth	MHz	DC		5500
Test Frequency	MHz		1000	
Gain	dB		15	
Output P1dB	dBm		+15.4	
Output IP3 (2)	dBm		+32	
Test Frequency	MHz		2000	
Gain	dB	12	14	18
Input Return Loss	dB		18	
Output Return Loss	dB		14	
Output P1dB	dBm	12	15	
Output IP3 (2)	dBm		32	
Noise Figure	dB		4.0	
Device Voltage	V	3.5	3.9	4.3
Device Current	mA		45	

^{1.} Test conditions unless otherwise noted: 25° C, Supply Voltage = +5 V, Rbias = 24.3 Ω , 50 Ω System

Typical Performance (3)

Parameter	Units	Typical						
Frequency	MHz	500	900	1900	2140			
S21	dB	15.5	15	14.2	14			
S11	dB	-20	-14	-17.4	-18			
S22	dB	-16	-13	-14.5	-15			
Output P1dB	dBm	+15.8	+15.4	+15	+15			
Output IP3 (2)	dBm	+32	+32	+30	+30			
Noise Figure	dB	3.7	3.7	3.7	3.7			

^{3.} Test conditions: $T = 25^{\circ}$ C, Supply Voltage = +5 V, Device Voltage = +3.9V, $R_{bias} = 24.3 \Omega$, 50 Ω System.

Absolute Maximum Rating

Parameter	Rating
Operating Case Temperature	-40 to +85 °C
Storage Temperature	-55 to +150 °C
Device Current	150 mA
RF Input Power (continuous)	+12 dBm
Junction Temperature	+250 °C

Operation of this device above any of these parameters may cause permanent damage.

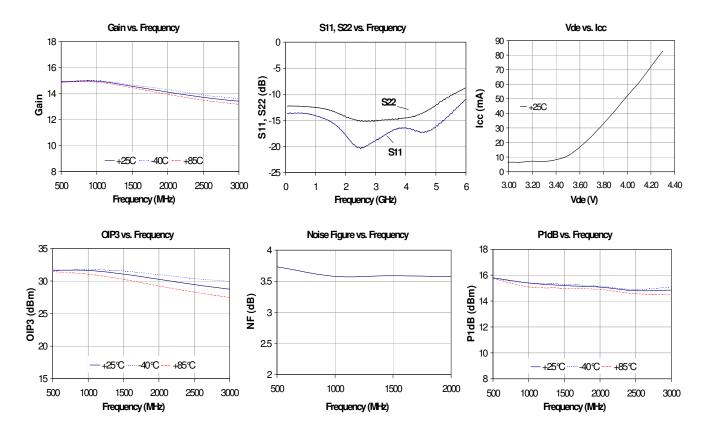
Ordering Information

Part No.	Description
ECG006B*	InGaP HBT Gain Block
ECG006B-G	(lead-tin SOT-89 Pkg) InGaP HBT Gain Block (lead-free/green/RoHS-compliant SOT-89 Pkg)
ECG006C*	InGaP HBT Gain Block
ECG006C-G	(lead-tin SOT-86 Pkg) InGaP HBT Gain Block (lead-free/green/RoHS-compliant SOT-86 Pkg)
ECG006F*	InGaP HBT Gain Block (lead-tin SOT-363 Pkg)
ECG006F-G	InGaP HBT Gain Block (lead-free/green/RoHS-compliant SOT-363 Pkg)
ECG006B-PCB	700 – 2400 MHz Fully Assembled Eval. Board
ECG006C-PCB	700 – 2400 MHz Fully Assembled Eval. Board
ECG006F-PCB	700 – 2400 MHz Fully Assembled Eval. Board

This package is being phased out in favor of the green package type which is backwards compatible for existing designs.

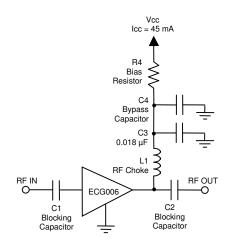
Specifications and information are subject to change without notice

^{2. 3}OIP measured with two tones at an output power of +2 dBm/tone separated by 1 MHz. The suppression on the largest IM3 product is used to calculate the 3OIP using a 2:1 rule.

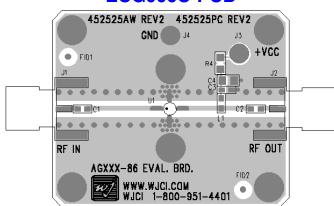


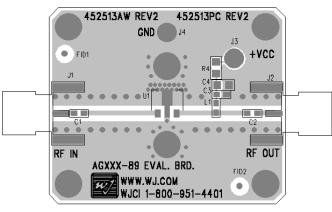
Typical Device RF Performance Supply Bias = +5 V, R_{bias} = 24.3 Ω , I_{cc} = 45 mA

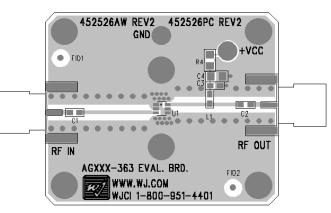
Frequency	MHz	100	500	900	1900	2140	2400	3500	5800
S21	dB	15.3	15.2	15.1	14.5	14.3	14.1	13.9	10.2
S11	dB	-20	-18	-14	-17	-18	-20	-17	-12.5
S22	dB	-29	-16	-13	-14	-14	-15	-15	-9.5
Output P1dB	dBm	+15.8	+15.4	+15.2	+15.0	+14.9	+14.6	+14	
Output IP3	dBm	+31	+31.5	+32	+30	+30	+29.6		
Noise Figure	dB	3.8	3.7	3.6	3.6	3.6	3.6		


- 1. Test conditions: T = 25° C, Supply Voltage = +5 V, Device Voltage = +3.9 V, Rbias = 24.3 Ω , Icc = 45 mA typical, 50 Ω System.
- 2. 30IP measured with two tones at an output power of +2 dBm/tone separated by 1 MIx. The suppression on the largest IM3 product is used to calculate the 30IP using a 2:1 rule.

 3. Data is shown as device performance only. Actual implementation for the desired frequency band will be determined by external components shown in the application circuit.




Recommended Application Circuit


ECG006C-PCB

ECG006B-PCB

ECG006F-PCB

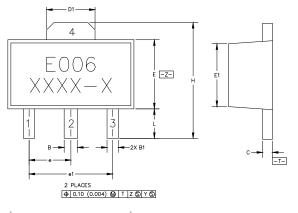
Recommended Component Values

Reference	Frequency (MHz)									
Designator	50	500	900	1900	2200	2500	3500			
L1	820 nH	220 nH	68 nH	27 nH	22 nH	18 nH	15 nH			
C1, C2, C4	.018 μF	1000 pF	100 pF	68 pF	68 pF	56 pF	39 pF			

- 1. The proper values for the components are dependent upon the intended frequency of operation.
- 2. The following values are contained on the evaluation board to achieve optimal broadband performance:

Ref. Desig.	Value / Type	Size
L1	39 nH wirewound inductor	0603
C1, C2	56 pF chip capacitor	0603
C3	0.018 μF chip capacitor	0603
C4	Do Not Place	
R4	24.3Ω 1% tolerance	0805

Recommended Bias Resistor Values

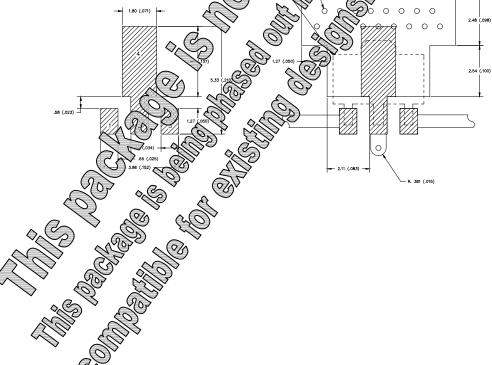

Supply Voltage	R1 value	Size
5 V	24.4 ohms	0805
6 V	46.7 ohms	0805
8 V	91 ohms	1210
9 V	113 ohms	1210
10 V	136 ohms	2010
12 V	180 ohms	2010

The proper value for R1 is dependent upon the supply voltage and allows for bias stability over temperature. WJ recommends a minimum supply bias of +5 V. A 1% tolerance resistor is recommended.

ECG006B (SOT-89 Package) Mechanical Infor®

This package may contain lead-bearing materials. The plating material on the leads

Outline Drawing



SYMBOL	MIN	MAX	ĺ
A	1.40 (.055)	1.60 (.063)	
В	.44 (.017)	.56 (.022)	
B1	.36 (.014)	.48 (.019)	
С	.35 (.014)	.44 (.017)	لم
D	4.40 (.173)	4.60 (.181)	\ \
D1	1.62 (.064)	1.83	>
E	2.29 (.079)	2.60	
E1	2.13 (.084)	015	T
e	1.50	59/	

NOTES:

will be marked with an descript with an alphanumeric lot surface of the package.

Tape and reel specifications for this part are location the website in the "Application eel specifications for this part are section.

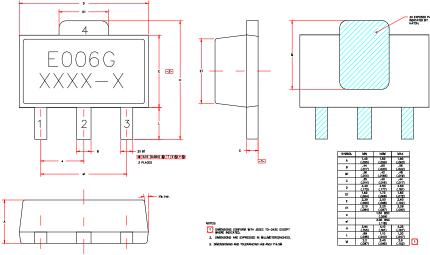
MSL / ESD Rating

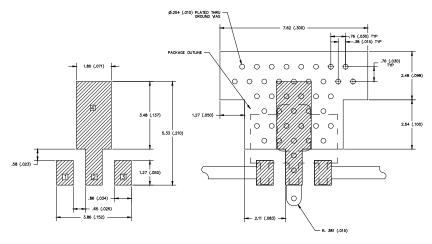
Caution! ESD sensitive device.

ESD Rating: Class 1A

Passes between 250 and 500V Value: Test: Human Body Model (HBM) Standard: JEDEC Standard JESD22-A114

MSL Rating: Level 3 at +235° C convection reflow JEDEC Standard J-STD-020 Standard:


- 1. Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010").
- 2. Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- 3. Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- 4. Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
- 5. RF trace width depends upon the PC board material and construction.
- 6. Use 1 oz. Copper minimum.
- 7. All dimensions are in millimeters (inches). Angles are in degrees.


ECG006B-G (Green / Lead-free SOT-89 Package) Mechanical Information

This package is lead-free/Green/RoHS-compliant. It is compatible with both lead-free (maximum 260°C reflow temperature) and leaded (maximum 245°C reflow temperature) soldering processes. The plating material on the leads is NiPdAu.

Outline Drawing

Land Pattern

Product Marking

The component will be marked with an "E006G" designator with an alphanumeric lot code on the top surface of the package.

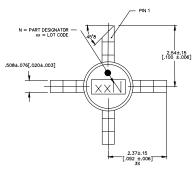
Tape and reel specifications for this part are located on the website in the "Application Notes" section.

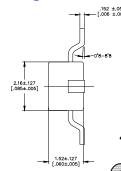
MSL / ESD Rating

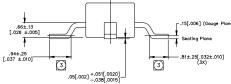
Caution! ESD sensitive device.

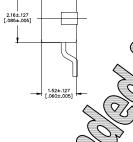
ESD Rating: Class 1A

Value: Passes between 250 and 500V
Test: Human Body Model (HBM)
Standard: JEDEC Standard JESD22-A114

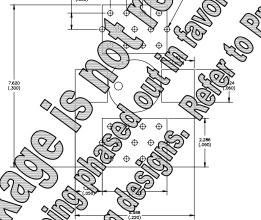

MSL Rating: Level 3 at +260° C convection reflow Standard: JEDEC Standard J-STD-020


- 1. Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010").
- Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- 4. Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
- 5. RF trace width depends upon the PC board material and construction.
- 6. Use 1 oz. Copper minimum.
- All dimensions are in millimeters (inches). Angles are in degrees.


ECG006C (SOT-86 Package) Mechanical Information


This package may contain lead-bearing materials. The plating material on the leads

Outline Drawing



as "xx") ator on the top

ons for this part are te in the "Application

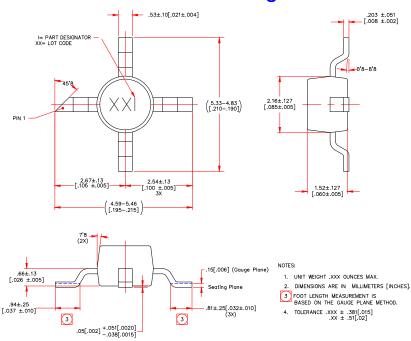
ESD Rating

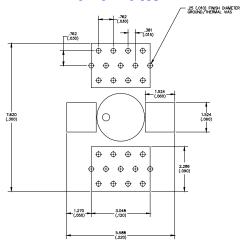
Caution! ESD sensitive device.

SD Rating: Class 1A

Value: Passes between 250 and 500V Test: Human Body Model (HBM) JEDEC Standard JESD22-A114 Standard:

MSL Rating: Level 1 at +235° C convection reflow JEDEC Standard J-STD-020


- 1. Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010").
- 2. Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- 3. Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- 4. Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
- 5. RF trace width depends upon the PC board material and construction.
- 6. Use 1 oz. Copper minimum.
- 7. All dimensions are in millimeters (inches). Angles are in degrees.


ECG006C-G (Green / Lead-free Sot-86 Package) Mechanical Information

This package is lead-free/Green/RoHS-compliant. It is compatible with both lead-free (maximum 260°C reflow temperature) and leaded (maximum 245°C reflow temperature) soldering processes. The plating material on the pins is annealed matte tin over copper.

Outline Drawing

Land Pattern

Product Marking

The component will be marked with a two-digit numeric lot code (shown as "XX") followed with a "I" designator on the top surface of the package.

Tape and reel specifications for this part are located on the website in the "Application Notes" section.

MSL / ESD Rating

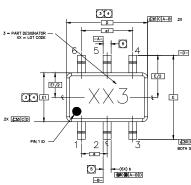
Caution! ESD sensitive device.

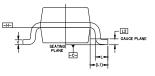
ESD Rating: Class 1A

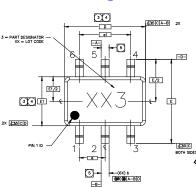
Value: Passes between 250 and 500V
Test: Human Body Model (HBM)
Standard: JEDEC Standard JESD22-A114

MSL Rating: Level 3 at +260° C convection reflow Standard: JEDEC Standard J-STD-020

- Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010").
- Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
- RF trace width depends upon the PC board material and construction.
- 6. Use 1 oz. Copper minimum.
- All dimensions are in millimeters (inches). Angles are in degrees.




ECG006F (SOT-363 Package) Mechanical Information


This package may contain lead-bearing materials. The plating material on the leads

Outline Drawing

TOP VIEW

'XX'') on the top

for this part are in the "Application

ESD Rating

ution! ESD sensitive device.

Class 1A

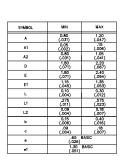
Passes between 250 and 500V Human Body Model (HBM) JEDEC Standard JESD22-A114 tandard:

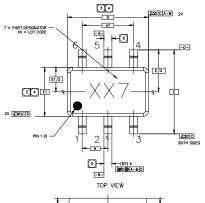
MSL Rating: Level 3 at +235° C convection reflow

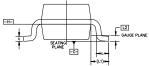
JEDEC Standard J-STD-020 Standard:

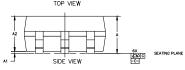
Mounting Config. Notes

- 1. Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010").
- 2. Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- 3. Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- 4. Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
- 5. RF trace width depends upon the PC board material and construction.
- 6. Use 1 oz. Copper minimum.
- 7. All dimensions are in millimeters (inches). Angles are in degrees.

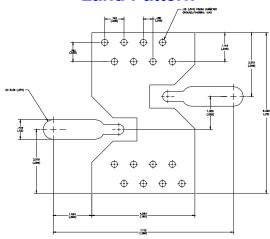

Specifications and information are subject to change without notice




ECG006F-G (Green / Lead-free SOT-363 Package) Mechanical Information


This package is lead-free/Green/RoHS-compliant. It is compatible with both lead-free (maximum 260°C reflow temperature) and leaded (maximum 245°C reflow temperature) soldering processes. The plating material on the leads is annealed matte tin over copper.

Outline Drawing



- DIMENSIONS AND TOLERANCING PER ASME Y14.5M-1194, PACKAGE CONFORMS TO JEDEC MO-203, ISSUE B.
- 3 DIME
- 5 DATUM A & B TO BE DETERMINED AT DATUM H

Land Pattern

Product Marking

The component will be marked with a twodigit numeric lot code (shown as "XX") followed with a "7" designator on the top surface of the package.

Tape and reel specifications for this part are located on the website in the "Application Notes" section.

MSL / ESD Rating

Caution! ESD sensitive device.

ESD Rating: Class 1A

Value: Passes between 250 and 500V Test: Human Body Model (HBM) Standard: JEDEC Standard JESD22-A114

MSL Rating: Level 3 +260° C convection reflow JEDEC Standard J-STD-020 Standard:

- 1. Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm
- Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.

 Mounting screws can be added near the part to fasten the
- board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
 RF trace width depends upon the PC board material and
- 6. Use 1 oz. Copper minimum.
- All dimensions are in millimeters (inches). Angles are in

Typical Device S-Parameters – ECG006B / ECG006B-G

S-Parameters ($V_{device} = +3.9 \text{ V}$, $I_{CC} = 45 \text{ mA}$, $T = 25^{\circ}\text{C}$, calibrated to device leads)

Freq (MHz)	S11 (dB)	S11 (ang)	S21 (dB)	S21 (ang)	S12 (dB)	S12 (ang)	S22 (dB)	S22 (ang)
50	-16.18	-2.18	15.76	178.02	-18.89	-0.38	-14.36	-2.29
500	-16.13	-22.13	15.57	160.12	-18.77	-2.87	-14.40	-26.41
1000	-15.97	-44.58	15.21	141.76	-18.46	-5.33	-14.15	-51.57
1500	-15.79	-68.38	14.80	124.56	-17.94	-9.45	-13.78	-77.30
2000	-15.34	-96.24	14.57	108.50	-17.29	-14.37	-13.23	-104.15
2500	-14.99	-124.42	14.34	91.11	-16.69	-21.48	-12.79	-131.75
3000	-14.73	-153.90	14.02	74.20	-16.16	-29.16	-12.22	-160.58
3500	-14.29	174.59	13.65	56.77	-15.76	-38.37	-11.63	170.65
4000	-13.38	141.41	13.22	39.56	-15.49	-47.75	-10.44	143.61
4500	-11.80	110.87	12.66	22.19	-15.29	-57.59	-9.04	117.68
5000	-9.66	85.53	12.00	5.48	-15.28	-68.56	-7.50	96.34
5500	-7.85	63.77	11.20	-10.89	-15.43	-79.10	-6.12	76.71
6000	-6.37	47.01	10.36	-26.75	-15.69	-89.87	-4.95	59.58

Typical Device S-Parameters – ECG006C / ECG006C-F

S-Parameters ($V_{device} = +3.9 \text{ V}$, $I_{CC} = 45 \text{ mA}$, $T = 25^{\circ}\text{C}$, calibrated to device leads)

Freq (MHz)	S11 (dB)	S11 (ang)	S21 (dB)	S21 (ang)	S12 (dB)	S12 (ang)	S22 (dB)	S22 (ang)
50	-13.66	-1.22	15.30	178.47	-18.67	-0.33	-12.25	-1.92
500	-13.64	-13.39	15.23	164.32	-18.59	0.29	-12.33	-20.62
1000	-14.11	-23.99	15.01	149.00	-18.38	0.78	-12.52	-41.41
1500	-15.20	-35.45	14.72	134.06	-17.99	0.29	-13.08	-62.51
2000	-17.86	-52.47	14.44	119.89	-17.52	-0.93	-14.31	-82.78
2500	-20.46	-93.43	14.06	105.18	-17.12	-3.33	-15.20	-99.71
3000	-18.86	-135.97	13.53	91.27	-16.59	-6.24	-15.01	-124.98
3500	-17.20	-158.47	12.99	77.75	-16.21	-10.91	-14.89	-157.99
4000	-16.45	-171.80	12.38	65.03	-15.93	-15.16	-14.50	170.24
4500	-17.31	166.84	11.76	52.68	-15.73	-19.74	-13.75	147.52
5000	-16.22	136.42	11.25	40.65	-15.52	-24.35	-12.08	133.59
5500	-13.68	110.91	10.56	28.09	-15.42	-29.98	-10.21	119.31
6000	-11.01	97.79	9.95	17.28	-15.43	-34.96	-8.73	106.39

Typical Device S-Parameters – ECG006F / ECG006F-G

S-Parameters ($V_{device} = +3.9 \text{ V}$, $I_{CC} = 45 \text{ mA}$, $T = 25^{\circ}\text{C}$, calibrated to device leads)

	device - 13.5 1;			ned to device ic				
Freq (MHz)	S11 (dB)	S11 (ang)	S21 (dB)	S21 (ang)	S12 (dB)	S12 (ang)	S22 (dB)	S22 (ang)
50	-16.22	-0.52	15.76	178.32	-18.82	-0.82	-14.16	-2.06
500	-14.87	-18.97	15.63	165.77	-18.87	1.49	-12.83	-24.91
1000	-16.45	-51.46	15.51	151.31	-18.40	1.44	-14.19	-55.98
1500	-16.41	-95.69	15.22	137.15	-18.07	0.35	-14.59	-93.37
2000	-14.08	-118.65	14.79	123.39	-17.74	-1.31	-13.52	-120.99
2500	-12.50	-114.48	14.48	112.93	-17.16	-2.57	-13.05	-122.53
3000	-12.18	-126.96	14.14	100.74	-16.80	-4.49	-12.19	-138.80
3500	-11.70	-139.53	13.94	88.52	-16.16	-8.66	-11.93	-159.41
4000	-10.97	-158.51	13.57	75.28	-15.72	-12.48	-11.00	174.63
4500	-10.24	178.62	13.03	62.14	-15.50	-19.07	-9.10	151.63
5000	-9.06	161.58	12.33	51.12	-15.19	-24.71	-7.50	139.14
5500	-8.32	150.77	11.60	42.08	-15.22	-28.00	-6.87	136.14
6000	-7.84	140.56	10.95	33.72	-15.14	-30.97	-6.78	137.51

Device S-parameters are available for download off of the website at: http://www.wj.com